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The detailed description of a morphological feature extraction process and a retrieval algorithm and tissue 

retrieval results without balanced training (Figure S1) are described and presented below. 



Morphological feature extraction  

Previously, 17 quantities to describe structural properties of prostate tissue were defined and 

used to detect cancer tissue 
1
. 8 of them are epithelium related features: 1) Size of epithelial cells 

2) Size of a nucleus 3) Number of nuclei 4) Distance to lumen 5) Distance to epithelial cell 

boundary 6) Number of isolated nuclei 7) Fraction of distant nuclei 8) Entropy of nuclei spatial 

distribution. The rest of 9 quantities are lumen-related features: 1) Size of a lumen 2) Number of 

lumens 3) Lumen roundness 4) lumen distortion 5) Lumen minimum bounding circle ratio 6) 

Lumen convex hull ratio 7) Symmetric index of lumen boundary 8) Symmetric index of lumen 

area 9) Spatial association of lumens and cytoplasm-rich regions. Additionally, we have defined 

9 quantities describing characteristics of epithelium, stroma, lumens, and glands: 

1) Number of stroma cells: Number of stroma pixels in a tissue. 

2) Minimum lumen distance: Minimum distance between lumens. 

3) Minimum gland distance: Minimum distance between glands. To find glands in a tissue, we 

first find neighboring nuclei for each lumen. Neighboring nuclei to a lumen are the ones present 

within the epithelial cells next to the lumen. Then, we find a subset of the neighboring nuclei 

Csub  which satisfy the following condition: 

       c C : Distance , Distance C , * Distance C ,sub sub subc l AVG l m STD l     

where l is a lumen,  Distance ,c l  denotes the distance from a nucleus c to a lumen l, and 

AVG(•) and STD(•) indicates the average and standard deviation of •. Initially, m is set to 1.5. At 

each iteration, nuclei which do not satisfy the criteria are eliminated for further consideration and 



m is increased by 0.01. Fitting an ellipse to the subset of the neighboring nuclei gives an estimate 

of a gland for the lumen. 

4) Ratio of lumen to epithelial cells: Ratio of the number of lumen pixels to the number of 

epithelial pixels in a tissue. 

5) Ratio of epithelial cells to stroma cells: Ratio of the number of epithelial pixels to the number 

of stroma pixels. 

6) Ratio of cell separation: Ratio of the number of separated epithelial nuclei to the total number 

of epithelial nuclei. Epithelial cells are designated as separated cells if their size < 500 pixels and 

>90% of their boundary is next to stroma cells. 

7) Ratio of sheets of cells: Ratio of the number of nuclei which are not associated with any gland 

and do not belong to the separated cells to the total number of nuclei. 

8) Degree of cell dispersion: Degree of dispersion of a cell type can be measured by variance-to-

mean ratio (VMR) 
2
. It is defined as VMR=

2


 where   is the average number of the pixels 

labeled with a cell type and  is the variance of the number of the pixels labeled with the cell 

type. VMR is separately computed for epithelial and stroma cells.  

9) Spatial autocorrelation of cells: To compute spatial autocorrelation of a cell type, we adopt 

two measures: Moran’s I and Greary’s C. Moran’s I 
3
 can be computed as follows: 
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where n is the number of the pixels assigned to the cell type, w is a random variable representing 

a weight associated with each pair of the pixels, y is a random variable for the number of 

adjacent pixels containing the same cell type, y  is the average of the number of adjacent pixels. 

For simplicity, ijw =1 if i and j are adjacent and ijw =0 otherwise. Similarly, Greary’s C 
4
 can be 

calculated as follows: 
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Prior to compute spatial autocorrelation of a cell type, for each pixel, the number of the adjacent 

pixels labeled with the same cell type is computed. These counts are used to measure spatial 

autocorrelation. Both Moran’s I and Greary’s C are computed for epithelial cells and stroma cells, 

respectively. 

For each of 26 quantities, we measure “global” and “local” features. To compute, “global” 

features, we employ AVG, STD, and sum total (TOT) of the quantities. “Local” features are 

calculated by sliding a rectangular window (NxN pixels) throughout a tissue sample. For each 

window, AVG and/or TOT of the quantities are computed, and then STD or MIN/MAX of the 

AVG and/or TOT values over all windows become “local” features. 5 different sizes of the 

window (N=20, 60, 100, 140, 180) are applied, and the “local” features are computed for each.  

 



Ranking-SVM 

Given a training dataset   
1

,
m
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
 with a feature vector n

ix   and a (class) label 

 1, 1iy    , a classification support vector machine (SVM) learns a separating hyperplane 

which maximizes the margin between support vectors representing different classes. In Ranking 

SVM 
5
, a label 

iy  denotes an ordering preference or a rank but a category, i.e., iy   and a 

complete ranking can be made among the labels. It seeks to learn a function f F  satisfying the 

following relations for any pair of data points:  

   i j i jy y f x f x   . 

Constructing such function can be formulated as follows: 
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where C is a tradeoff between training error and model complexity and ij  is a slack variable. 

Intuitively, the function aims at minimizing the number of swapped pairs of training data points 

in terms of their desired rankings 
5
. Interestingly, optimizing the formula is, in fact, equivalent to 

that of a classification SVM as pairwise difference vectors  i jx x  are provided. 

In our system, the label is given by a tissue similarity score between a pair of tissue samples, and 

a feature vector is generated by the difference vector between the feature vectors of the pair. In 

other words, a pair of tissue samples forms one instance to train Ranking-SVM, and it attempts 

to learn the ordering preference between the pairs of samples. Thus, as a query is given to our 



system, we generate an instance for each pair of a query and a tissue sample in the database, and 

the rankings of the entire instances are predicted by Ranking-SVM. The samples which result in 

the top-T ranking instances with the query are designated as most similar samples and provided 

with pathologists. 



 

 

Figure S1. Queries retrieving good matching cases without balanced training. (a) The 

number of queries retrieving at least GN  number of good matches, out of T retrieved samples, is 

computed ( GN =1,…,T), and compared to the random chance (R0~R9) of retrieving that number 

of good matching cases. (b) The frequency and cumulative density of similarity scores are 

plotted as retrieval process is trained on balanced training dataset and unbalanced training dataset, 

respectively. A good matching case is defined as a pair of samples whose similarity score is ≥ sth , 

sth =0,…,8. Random chance of retrieving ≥ GN  good matching cases is computed as 

 where SN  and SSN  denote the number of samples in the database 

and the number of samples whose TMS with the query ≥ sth , respectively. 
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